Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Lett Appl Microbiol ; 77(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38070878

ABSTRACT

Staphylococcus aureus is one of the main etiological agents causing foodborne diseases, and the development of new antibacterial agents is urgent. This study evaluated the antibacterial activity and the possible mechanism of action of the 1,3,4-oxadiazole LMM6 against S. aureus. The minimum inhibitory concentration (MIC) of LMM6 ranged from 1.95 to 7.81 µg ml-1. The time-kill assay showed that 48-h treatment at 1× to 8× MIC reduced S. aureus by 4 log colony forming unit (CFU), indicating a bacteriostatic effect. Regarding the possible mechanism of action of LMM6, there was accumulation of reactive oxygen species (ROS) and an increase in the absorption of crystal violet (∼50%) by the cells treated with LMM6 at 1× and 2× MIC for 6-12 h. In addition, there was increased propidium iodide uptake (∼84%) after exposure to LMM6 for 12 h at 2× MIC. After 48 h of treatment, 100% of bacteria had been injured. Scanning electron microscopy observations demonstrated that LMM6-treated cells were smaller compared with the untreated group. LMM6 exhibited bacteriostatic activity and its mechanism of action involves increase of intracellular ROS and disturbance of the cell membrane, which can be considered a key target for controlling the growth of S. aureus.


Subject(s)
Staphylococcal Infections , Staphylococcus aureus , Humans , Reactive Oxygen Species , Anti-Bacterial Agents/pharmacology , Oxadiazoles/pharmacology , Microbial Sensitivity Tests
2.
Photodiagnosis Photodyn Ther ; 44: 103875, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37923285

ABSTRACT

INTRODUCTION: The Trichophyton rubrum complex comprises the majority of dermatophyte fungi (DM) responsible for chronic cases of onychomycosis, which is treated with oral or topical antifungals. However, owing to antifungal resistance, alternative therapies, such as photodynamic therapy (PDT), are needed. This study investigated the frequency of the T. rubrum species complex in onychomycosis cases in the northwestern region of Paraná state, Brazil, and evaluated the efficacy of (PDT) using P123-encapsulated hypericin (Hyp-P123) on clinical isolates of T. rubrum in the planktonic cell and biofilm forms. MATERIAL AND METHODS: The frequency of the T. rubrum complex in onychomycosis cases from 2017 to 2021 was evaluated through a data survey of records from the Laboratory of Medical Mycology (LEPAC) of the State University of Maringa (UEM). To determine the effect of PDT-Hyp-P123 on planktonic cells of T. rubrum isolates, 1 × 105 conidia/mL were treated with ten different concentrations of Hyp-P123 and then irradiated with 37.8 J/cm2. Antibiofilm activity of PDT-Hyp-P123 was tested against T. rubrum biofilm in the adhesion phase (3 h), evaluated 72 h after irradiation (37.8 J/cm2), and the mature biofilm (72 h), evaluated immediately after irradiation. In this context, three different parameters were evaluated: cell viability, metabolic activity and total biomass. RESULTS: The T. rubrum species complex was the most frequently isolated DM in onychomycosis cases (approximately 80 %). A significant reduction in fungal growth was observed for 75 % of the clinical isolates tested with a concentration from 0.19 µmol/L Hyp-P123, and 56.25 % had complete inhibition of fungal growth (fungicidal action); while all isolates were azole-resistant. The biofilm of T. rubrum isolates (TR0022 and TR0870) was inactivated in both the adhesion phase and the mature biofilm. CONCLUSION: PDT-Hyp-P123 had antifungal and antibiofilm activity on T. rubrum, which is an important dermatophyte responsible for onychomycosis cases.


Subject(s)
Onychomycosis , Photochemotherapy , Humans , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Onychomycosis/drug therapy , Onychomycosis/microbiology , Photochemotherapy/methods , Azoles/pharmacology , Azoles/therapeutic use , Trichophyton , Photosensitizing Agents/pharmacology , Photosensitizing Agents/therapeutic use , Biofilms
3.
Crit Rev Microbiol ; 49(1): 38-56, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35171731

ABSTRACT

Considering the multifaceted and increasing application of photodynamic therapy (PDT), in recent years the antimicrobial employment of this therapy has been highlighted, because of the antiviral, antibacterial, antiparasitic, and antifungal activities that have already been demonstrated. In this context, research focussed on antimycological action, especially for treatment of superficial infections, presents promising growth due to the characteristics of these infections that facilitate PDT application as new therapeutic options are needed in the field of medical mycology. Among the more than one hundred classes of photosensitizers the antifungal action of hypericin (Hyp) stands out due to its ability to permeate the lipid membrane and accumulate in different cytoplasmic organelles of eukaryotic cells. In this review, we aim to provide a complete overview of the origin, physicochemical characteristics, and optimal alternative drug deliveries that promote the photodynamic action of Hyp (Hyp-PDT) against fungi. Furthermore, considering the lack of a methodological consensus, we intend to compile the best strategies to guide researchers in the antifungal application of Hyp-PDT. Overall, this review provides a future perspective of new studies and clinical possibilities for the advances of such a technique in the treatment of mycoses in humans.


Subject(s)
Anti-Infective Agents , Biological Products , Photochemotherapy , Humans , Photochemotherapy/methods , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Photosensitizing Agents/pharmacology , Anti-Infective Agents/therapeutic use
4.
Front Cell Infect Microbiol ; 11: 684525, 2021.
Article in English | MEDLINE | ID: mdl-34249777

ABSTRACT

Invasive aspergillosis is one of the major causes of morbidity and mortality among invasive fungal infections. The search for new antifungal drugs becomes imperative when existing drugs are not able to efficiently treat these infections. Ebselen, is an organoselenium compound, already successfully approved in clinical trials as a repositioned drug for the treatment of bipolar disorder and prevention of noise-induced hearing loss. In this study, we aimed to reposition ebselen for the treatment of invasive aspergillosis by showing ebselen effectiveness in a murine model. For this, BALB/c mice were immunosuppressed and infected systemically with Aspergillus fumigatus. Animals were divided and treated with ebselen, voriconazole, or drug-free control, for four days. The kidneys were used for CFU count and, histopathological and cytokine analysis. Ebselen was able to significantly reduce the fungal burden in the kidneys of infected mice with efficacy comparable with voriconazole treatment as both had reductions to the same extent. The absence of hyphae and intact kidney tissue structure observed in the histopathological sections analyzed from treated groups corroborate with the downregulation of IL-6 and TNF. In summary, this study brings for the first time in vivo evidence of ebselen efficacy against invasive aspergillosis. Despite these promising results, more animal studies are warranted to evaluate the potential role of ebselen as an alternative option for the management of invasive aspergillosis in humans.


Subject(s)
Aspergillosis , Invasive Fungal Infections , Animals , Antifungal Agents/pharmacology , Antifungal Agents/therapeutic use , Aspergillosis/drug therapy , Azoles , Disease Models, Animal , Invasive Fungal Infections/drug therapy , Isoindoles , Mice , Mice, Inbred BALB C , Organoselenium Compounds
5.
Pathogens ; 10(3)2021 Mar 07.
Article in English | MEDLINE | ID: mdl-33800117

ABSTRACT

Candida albicans is the most common species isolated from nosocomial bloodstream infections. Due to limited therapeutic arsenal and increase of drug resistance, there is an urgent need for new antifungals. Therefore, the antifungal activity against C. albicans and in vivo toxicity of a 1,3,4-oxadiazole compound (LMM6) was evaluated. This compound was selected by in silico approach based on chemical similarity. LMM6 was highly effective against several clinical C. albicans isolates, with minimum inhibitory concentration values ranging from 8 to 32 µg/mL. This compound also showed synergic effect with amphotericin B and caspofungin. In addition, quantitative assay showed that LMM6 exhibited a fungicidal profile and a promising anti-biofilm activity, pointing to its therapeutic potential. The evaluation of acute toxicity indicated that LMM6 is safe for preclinical trials. No mortality and no alterations in the investigated parameters were observed. In addition, no substantial alteration was found in Hippocratic screening, biochemical or hematological analyzes. LMM6 (5 mg/kg twice a day) was able to reduce both spleen and kidneys fungal burden and further, promoted the suppresses of inflammatory cytokines, resulting in infection control. These preclinical findings support future application of LMM6 as potential antifungal in the treatment of invasive candidiasis.

6.
J Photochem Photobiol B ; 215: 112103, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33383558

ABSTRACT

The antifungal application of photodynamic therapy (PDT) has been widely explored. According to superficial nature of tinea capitis and the facility of application of light sources, the use of nanoencapsulated hypericin in P-123 associated with PDT (P123-Hy-PDT) has been a poweful tool to treat this pathology. Thus, the aim of this study was to evaluate the efficiency of P123-Hy-PDT against planktonic cells and in a murine model of dermatophytosis caused by Microsporum canis. In vitro antifungal susceptibility and in vivo efficiency tests were performed, including a skin toxicity assay, analysis of clinical signs by evaluating score, and photoacoustic spectroscopy. In addition, tissue analyses by histopathology and levels of pro-inflammatory cytokines, such as quantitative and qualitative antifungal assays, were employed. The in vitro assays demonstrated antifungal susceptibility with 6.25 and 12.5 µmol/L P123-Hy-PDI; these experiments are the first that have used this treatment of animals. P123-Hyp-mediated PDT showed neither skin nor biochemical alteration in vivo; it was safe for dermatophytosis treatment. Additionally, the treatment revealed rapid improvement in clinical signs at the site of infection after only three treatment sessions, with a clinical score confirmed by photoacoustic spectroscopy. The mycological reduction occurred after six treatment sessions, with a statistically significant decrease compared with untreated infected animals. These findings showed that P123-Hy-PDT restored tissue damage caused by infection, a phenomenon confirmed by histopathological analysis and proinflammatory cytokine levels. Our results reveal for the first time that P123-Hy-PDT is a promising treatment for tinea capitis and tinea corporis caused by M. canis, because it showed rapid clinical improvement and mycological reduction without causing toxicity.


Subject(s)
Nanostructures/chemistry , Perylene/analogs & derivatives , Photochemotherapy/methods , Poloxamer/analogs & derivatives , Tinea/drug therapy , Animals , Anthracenes , Capsules , Mice , Perylene/chemistry , Perylene/pharmacology , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Poloxamer/chemistry , Polymerization
7.
Photodiagnosis Photodyn Ther ; 32: 101957, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32818649

ABSTRACT

Candidiasis is one of the most common diseases that occur in the oral cavity, caused mainly by the species Candida albicans. Methylene blue (MB) has a potential for microbial photoinactivation and can cause the destruction of fungi when applied in Photodynamic Therapy (PDT). Mucoadhesive films are increasingly being studied as a platform for drug application due to their advantages when compared to other pharmaceutical forms. The aim of this work was to develop mucoadhesive buccal film containing poloxamer 407 (P407), alcohol polyvinyl (PVA) and polyvinylpyrrolidone (PVP) for the release of MB aiming the photoinactivation of Candida albicans in buccal infections. Different amounts of P407 were added to the binary polymeric blends composed PVA and PVP. Formulations were characterized as morphology, thickness, density, bending strength, mechanical properties, water vapor transmission, disintegration time, mucoadhesion, DSC, ATR-FTIR, in vitro drug release profile and photodynamic inactivation. The films displayed physicochemical characteristics dependent of polymeric composition, mucoadhesive properties, fast MB release and were effective in photo inactivate the local growth of Candida albicans isolates. The formulation containing the lowest PVA and P407 amounts displayed the best performance. Therefore, data obtained from the film system show its potentially useful role as a platform for buccal MB delivery in photoinactivation of C. albicans, showing its potential for in vivo evaluation.


Subject(s)
Candida albicans , Photochemotherapy , Drug Delivery Systems , Drug Liberation , Mouth Mucosa/metabolism , Photochemotherapy/methods , Photosensitizing Agents/metabolism , Photosensitizing Agents/pharmacology
8.
Front Microbiol ; 10: 2130, 2019.
Article in English | MEDLINE | ID: mdl-31572335

ABSTRACT

Candida infections have become a serious public health problem with high mortality rates, especially in immunocompromised patients, since Candida albicans is the major opportunistic pathogen responsible for systemic or invasive candidiasis. Commercially available antifungal agents are restricted and fungal resistance to such drugs has increased; therefore, the development of a more specific antifungal agent is necessary. Using assays for antifungal activity, here we report that two new compounds of 1,3,4-oxadiazoles class (LMM5 and LMM11), which were discovered by in silico methodologies as possible thioredoxin reductase inhibitors, were effective against C. albicans. Both compounds had in vitro antifungal activity with MIC 32 µg/ml. Cytotoxicity in vitro demonstrated that LMM5 and LMM11 were non-toxic in the cell lines evaluated. The kinetic of the time-kill curve suggested a fungistatic profile and showed an inhibitory effect of LMM5 and LMM11 in 12 h that remained for 24 and 36 h, which is better than fluconazole. In the murine systemic candidiasis model by C. albicans, the two compounds significantly reduced the renal and spleen fungal burden. According to the SEM and TEM images, we hypothesize that the mechanism of action of LMM5 and LMM11 is directly related to the inhibition of the enzyme thioredoxin reductase and internally affect the fungal cell. In view of all in vitro and in vivo results, LMM5 and LMM11 are effective therapeutic candidates for the development of new antifungal drugs addressing the treatment of human infections caused by C. albicans.

9.
Article in English | MEDLINE | ID: mdl-31293987

ABSTRACT

Candida albicans is the major pathogen isolated from nosocomial bloodstream infections, leading to higher mortality rates. Thus, due to its clinical relevance, studies aiming to understand host-pathogen interactions in C. albicans infection are necessary. Therefore, we performed proteomic analysis using a murine model of serial systemic infection by C. albicans to evaluate possible changes in the protein profile of the pathogen over time. Firstly, we observed a reduction in the median survival time of infected animals with increasing passage number, suggesting a higher pathogenicity acquired during repeated infections. By LC-MS/MS, it was possible to obtain protein profiles from the wild-type strain (WT) and compare them to proteins extracted from Candida cells recovered from infected tissues during passages one, three, and four (P1, P3, and P4). We obtained 56, 29, and 97 proteins in P1, P3, P4, respectively, all varying in abundance. Regarding biological processes, the majority of proteins were related to carbohydrate metabolism, stress responses and amino acid metabolism. The proteins were also categorized according to their potential role in virulence traits, such as biofilm production, yeast-to-hyphae transition, phenotypic switching, proteins related to stress responses, and uncharacterized proteins. Therefore, serial infection in combination with proteomic approach enabled us to deepen the existing knowledge about host-pathogen interactions.


Subject(s)
Candida albicans/metabolism , Candidiasis/metabolism , Fungal Proteins/metabolism , Host-Pathogen Interactions/physiology , Proteomics , Amino Acids/metabolism , Animals , Biofilms , Candida albicans/pathogenicity , Candidiasis/microbiology , Carbohydrate Metabolism , Chromatography, Liquid , Disease Models, Animal , Female , Mice , Mice, Inbred BALB C , Tandem Mass Spectrometry , Virulence , Virulence Factors/metabolism
10.
Bioorg Chem ; 84: 87-97, 2019 03.
Article in English | MEDLINE | ID: mdl-30496872

ABSTRACT

Drug repositioning is the process of discovery, validation and marketing of previously approved drugs for new indications. Our aim was drug repositioning, using ligand-based and structure-based computational methods, of compounds that are similar to two hit compounds previously selected by our group that show promising antifungal activity. Through the ligand-based method, 100 compounds from each of three databases (MDDR, DrugBank and TargetMol) were selected by the Tanimoto coefficient, as similar to LMM5 or LMM11. These compounds were analyzed by the scaffold trees, and up to 10 compounds from each database were selected. The structure-based method (molecular docking) using thioredoxin reductase as the target drug was performed as a complementary approach, resulting in six compounds that were tested in an in vitro assay. All compounds, particularly raltegravir, showed antifungal activity against the genus Paracoccidioides. Raltegravir, an antiviral drug, showed promising antifungal activity against the experimental murine paracoccidioidomycosis, with significant reduction of the fungal burden and decreased alterations in the lung structure of mice treated with 1 mg/kg of raltegravir. In conclusion, the combination of two in silico methods for drug repositioning was able to select an antiviral drug with promising antifungal activity for treatment of paracoccidioidomycosis.


Subject(s)
Antifungal Agents/pharmacology , Antiviral Agents/pharmacology , Invasive Fungal Infections/drug therapy , Paracoccidioidomycosis/drug therapy , Animals , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Candida/drug effects , Cryptococcus neoformans/drug effects , Dose-Response Relationship, Drug , Drug Repositioning , Male , Mice , Mice, Inbred BALB C , Models, Molecular , Molecular Structure , Paracoccidioides/drug effects , Structure-Activity Relationship
11.
Article in English | MEDLINE | ID: mdl-30348661

ABSTRACT

Paracoccidioidomycosis (PCM), caused by Paracoccidioides, is a systemic mycosis with granulomatous character and a restricted therapeutic arsenal. The aim of this work was to search for new alternatives to treat largely neglected tropical mycosis, such as PCM. In this context, the enzymes of the shikimate pathway constitute excellent drug targets for conferring selective toxicity because this pathway is absent in humans but essential for the fungus. In this work, we have used a homology model of the chorismate synthase (EC 4.2.3.5) from Paracoccidioides brasiliensis (PbCS) and performed a combination of virtual screening and molecular dynamics testing to identify new potential inhibitors. The best hit, CP1, successfully adhered to pharmacological criteria (adsorption, distribution, metabolism, excretion, and toxicity) and was therefore used in in vitro experiments. Here we demonstrate that CP1 binds with a dissociation constant of 64 ± 1 µM to recombinant chorismate synthase from P. brasiliensis and inhibits enzymatic activity, with a 50% inhibitory concentration (IC50) of 47 ± 5 µM. As expected, CP1 showed no toxicity in three cell lines. On the other hand, CP1 reduced the fungal burden in lungs from treated mice, similar to itraconazole. In addition, histopathological analysis showed that animals treated with CP1 displayed less lung tissue infiltration, fewer yeast cells, and large areas with preserved architecture. Therefore, CP1 was able to control PCM in mice with a lower inflammatory response and is thus a promising candidate and lead structure for the development of drugs useful in PCM treatment.


Subject(s)
Antifungal Agents/pharmacology , Drug Discovery/methods , Paracoccidioides/drug effects , Paracoccidioidomycosis/drug therapy , Phosphorus-Oxygen Lyases/antagonists & inhibitors , Quinolines/pharmacology , Amino Acid Sequence , Animals , Cell Line, Tumor , Disease Models, Animal , HeLa Cells , Human Umbilical Vein Endothelial Cells , Humans , Itraconazole/pharmacology , Male , Mice , Mice, Inbred BALB C , Microbial Sensitivity Tests , Microscopy, Electron, Scanning , Molecular Dynamics Simulation , Paracoccidioides/classification , Paracoccidioides/isolation & purification , Pulmonary Fibrosis/drug therapy , Pulmonary Fibrosis/microbiology , Sequence Analysis, Protein
12.
Microb Pathog ; 125: 177-182, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30227228

ABSTRACT

Candida tropicalis has emerged as one of the major Candida non-C. albicans species, in terms of epidemiology and virulence. Despite its virulence, C. tropicalis pathogenic mechanism has yet not been fully defined. The current study aimed to demonstrate the interaction of mature C. tropicalis ATCC 750 biofilm formed on catheter with different human cell lines. In vitro mature (72 h) C. tropicalis biofilms were produced on small catheter fragments (SCF) and were mainly composed by blastoconidia. Then, migration of yeast cells from mature biofilm to human cell surfaces (HeLa and HUVEC) was investigated. After contact with both cell lines, the surface of SCF, containing mature C. tropicalis biofilm, exhibited predominantly the filamentous form. Meanwhile, fresh biofilm formed on human cell surfaces also revealed mainly of blastoconidia involved by extracellular matrix. Total biomass and metabolic activity from the remaining biofilm on SCF surface, after direct contact with human cells, exhibited a significant reduction. Mature C. tropicalis biofilm modified its extracellular matrix components, after contact with human cells. Thus, we described for the first time an easy and simple in vitro model with catheter, which could be a powerful tool for future studies that desires to elucidate the mechanisms involved in C. tropicalis biofilm.


Subject(s)
Biofilms/growth & development , Candida tropicalis/growth & development , Catheters/microbiology , Host-Pathogen Interactions , Candida tropicalis/physiology , Endothelial Cells/microbiology , Epithelial Cells/microbiology , HeLa Cells , Human Umbilical Vein Endothelial Cells , Humans , Hyphae/growth & development
13.
AAPS PharmSciTech ; 19(7): 3258-3271, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30209790

ABSTRACT

Intra-periodontal pocket drug delivery systems, such as liquid crystalline systems, are widely utilized improving the drug release control and the therapy. Propolis is used in the treatment of periodontal diseases, reducing the inflammatory and infectious conditions. Iron oxide magnetic nanoparticles (MNPs) can improve the treatment when an alternating external magnetic field (AEMF) is applied, increasing the local temperature. The aim of this study was to develop a liquid crystalline system containing MNPs for intra-periodontal pocket propolis release. MNPs were prepared using iron salts and the morphological, size, thermal, x-ray diffraction, magnetometry, and Mössbauer spectroscopy analyses were performed. Cytotoxicity studies using Artemia salina and fibroblasts were also accomplished. The systems were prepared using polyoxyethylene (10) oleyl ether, isopropyl myristate, purified water, and characterized by polarized optical microscopy, rheometry, and in vitro drug release profile using a periodontal pocket simulator apparatus. The antifungal activity of the systems was investigated against Candida spp. using an AEMF. MNPs displayed nanometric size, were monodisperse, and they displayed very low cytotoxicity. Microscopically homogeneous formulations were obtained displaying important physicochemical and biological properties. The system displayed prolonged release of propolis and important in vitro fungicide activity, which was increased when the AEMF was applied, indicating a potentially alternative therapy for the treatment of the periodontal disease.


Subject(s)
Drug Liberation , Liquid Crystals/chemistry , Magnetic Fields , Magnetite Nanoparticles/chemistry , Propolis/metabolism , Animals , Antifungal Agents/chemistry , Antifungal Agents/pharmacokinetics , Artemia , Drug Delivery Systems/methods , Fibroblasts/drug effects , Fibroblasts/metabolism , Temperature , X-Ray Diffraction
14.
Microb Pathog ; 113: 225-232, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29074432

ABSTRACT

BACKGROUND: Although the majority of Candida infections are thought to come from endogenous sources, the healthcare workers' (HCWs) hands are being increasingly reported as vehicles for the transmission of pathogens. The aim of the present study was to evaluate the susceptibility of yeast isolated from the HCWs' hands and ICU (Intensive Care Unit) surfaces to antifungal agents and to determine the virulence potential and the genetic similarity between the same. METHODS: The susceptibility of yeasts from the HCWs' hands (n = 57) and ICU surfaces (n = 98) to conventional antifungals (fluconazole, voriconazole, amphotericin B and micafungin) was evaluated using the broth microdilution assay accordance with CLSI M27-A3. Additionally, some virulence factors such as adhesion and biofilm capacity on abiotic surfaces and on endothelial cells were evaluated, as well as germ tube formation. The similarity among yeast isolates were evaluated by the RAPD technique using the P4, OPA18 and OPE18 primers. RESULTS: Five species of Candida were found on the HCWs' hands (C. albicans, C. parapsilosis (sensu stricto), C. glabrata, C. tropicalis and C. krusei) and two on ICU surfaces (C. albicans and C. parapsilosis (sensu stricto)). The isolates from hands had higher resistance rates, with C. glabrata having the highest indices (100% FLU; 100% MFG). The similarity of C. albicans from HCWs and ICU surfaces was ≥80% according to the three primers analyzed. Candida spp. from hands had a greater potential for adhesion and biofilm formation on abiotic surfaces (p < 0.05). C. albicans from ICU surfaces had the greatest potential of adhesion on endothelial cells after 2 and 24 h, and presented high filamentation in SEM images and formed more and larger germ tubes (p < 0.05). CONCLUSION: the present study showed the significant virulence potential of yeasts transmitted in the hospital environment for the first time. Additionally, healthy people working in the ICU can carry these yeasts, which are capable of surviving in hospital surfaces, on their hands, offering a risk to patients, especially those who are immunocompromised.


Subject(s)
Candida/isolation & purification , Cross Infection/microbiology , Cross Infection/transmission , Hand/microbiology , Health Personnel , Virulence Factors/analysis , Antifungal Agents/pharmacology , Biofilms/growth & development , Brazil/epidemiology , Candida/classification , Candida/drug effects , Candida/pathogenicity , Candidiasis/transmission , Drug Resistance, Fungal , Endothelial Cells/microbiology , Humans , Intensive Care Units , Microbial Sensitivity Tests , Random Amplified Polymorphic DNA Technique
15.
Int J Mol Sci ; 18(9)2017 Sep 06.
Article in English | MEDLINE | ID: mdl-28878139

ABSTRACT

Glucans are a group of glucose polymers that are found in bacteria, algae, fungi, and plants. While their properties are well known, their biochemical and solubility characteristics vary considerably, and glucans obtained from different sources can have different applications. Research has described the bioactivity of β-glucans extracted from the algae of the Laminaria genus, including in vivo and in vitro studies assessing pro- and anti-inflammatory cytokines, vaccine production, inhibition of cell proliferation, and anti- and pro-oxidant activity. Thus, the objective of this article was to review the potential application of β-glucans from Laminaria spp. in terms of their immunomodulatory properties, microorganism host interaction, anti-cancer activity and vaccine development.


Subject(s)
Glucans/chemistry , Laminaria/chemistry , Animals , Humans , Immunomodulation/physiology , Macrophages/drug effects , Macrophages/metabolism , Neutrophils/drug effects , Neutrophils/metabolism , Rats , Reactive Oxygen Species/metabolism , beta-Glucans/chemistry , beta-Glucans/pharmacology
16.
Article in English | MEDLINE | ID: mdl-28793015

ABSTRACT

Vulvovaginal candidiasis (VVC) in HIV-infected (HIV+) women is a serious public health problem. However, little is known about the virulence mechanisms of vaginal Candida albicans from HIV+ women in the post-highly active antiretroviral therapy (HAART) era. Here, we report a comparative analysis of the expression of key virulence factors and genetic variability of 26 vaginal C. albicans strains isolated from HIV+ women undergoing HAART and 18 from HIV-uninfected (HIV-) women. In general, we observed that C. albicans from HIV+ women receiving HAART showed lower expression of virulence factors compared with C. albicans from HIV- women, except for the proteinase activity which is highly expressed. The results in HIV-women further suggest that virulence factors appear to be expressed in response to the yeast stress, in the presence of an adequate immune response. Furthermore, the RAPD results showed a high heterogeneity among isolates from both groups of women. These findings in HIV+ women using HAART will help to improve the monitoring of vaginal yeast infections and the quality of life of patients.


Subject(s)
AIDS-Related Opportunistic Infections/microbiology , Candida albicans/genetics , Candida albicans/pathogenicity , Candidiasis, Vulvovaginal/microbiology , Virulence Factors/genetics , Antiretroviral Therapy, Highly Active , Biofilms/growth & development , Candida albicans/isolation & purification , Candida albicans/ultrastructure , Female , Genetic Variation , HIV Infections/drug therapy , HIV Infections/virology , Humans , Microscopy, Electron, Scanning
17.
J Med Microbiol ; 66(8): 1225-1228, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28771140

ABSTRACT

The present study aimed to characterize cell damage caused by vaginal Candida albicans isolates from women with different symptomatologies. It was evaluated 12 clinical isolates of C. albicans from vaginal samples: 4 from asymptomatic women (AS), 4 from women with a single episode of vulvovaginal candidiasis (VVC) and 4 from women with recurrent vulvovaginal candidiasis (RVVC). We evaluated the ability of C. albicans to adhere to human cervical cancer cells (SiHa), the yeast-SiHa cell interactions and cell damage. All of the clinical isolates presented a high adhesion capacity on SiHa cells. However, clinical isolates from symptomatic women (VVC and RVVC) had higher filamentation after contact (24 h) with SiHa cells and a greater capacity to cause cell damage (>80 %). Clinical isolates from symptomatic women had greater potential to invade SiHa cells, suggesting that they are more pathogenic than AS isolates.


Subject(s)
Candida albicans/isolation & purification , Candidiasis, Vulvovaginal/diagnosis , Candidiasis, Vulvovaginal/microbiology , Candida albicans/classification , Candida albicans/genetics , Candidiasis, Vulvovaginal/physiopathology , Cell Death , Cell Line, Tumor , Female , Humans , Vagina/cytology , Vagina/microbiology
18.
Arch Gynecol Obstet ; 296(3): 519-526, 2017 09.
Article in English | MEDLINE | ID: mdl-28730269

ABSTRACT

PURPOSE: Vulvovaginal candidiasis (VVC) is one of the most frequent female genital disorders and Candida glabrata is the second most common agent. Current study was aimed to study the susceptibility to antifungal agents of C. glabrata isolated from vaginal samples and some virulence attributes in order to better understand why this species is emerging as the main VVC agents. METHODS: A total of 60 C. glabrata vaginal isolates were included in this study. Firstly they were screened by susceptibility tests to antifungal agents. The isolates that showed sensitivity or resistance to fluconazole were evaluated for their virulence potential, including ability to adhere to polystyrene and vaginal ring, cell surface hydrophobicity (CSH) and capacity to form biofilm. RESULTS: Candida glabrata isolates varied significantly in adherence capacity, biofilm formation and CSH. However, it was possible to observe that isolates resistant to fluconazole adhered more efficiently to the vaginal ring and were statistically more able to form biofilm. CONCLUSION: These results allow hypothesizing that C. glabrata is an emergent agent in VVC probably because the treatment with fluconazole selects this species. But once adhered, yeasts remain on biotic or abiotic surfaces causing colonization or VVC symptomatology.


Subject(s)
Candida glabrata , Candidiasis, Vulvovaginal/microbiology , Antifungal Agents/pharmacology , Biofilms , Candida glabrata/drug effects , Candida glabrata/isolation & purification , Candida glabrata/pathogenicity , Female , Humans , Microbial Sensitivity Tests , Virulence
19.
PLoS One ; 11(7): e0158870, 2016.
Article in English | MEDLINE | ID: mdl-27415762

ABSTRACT

We studied host factors that could predispose women to develop recurrent vulvovaginal candidiasis (RVVC), including glycemia, insulin resistance, chronic stress, antioxidant capacity, overall immune status, local inflammation and vaginal microbiota. The presence of yeasts in vaginal culture was screened in 277 women, with or without signs and symptoms of VVC and RVVC. The presence of an inflammatory process and microbiota were analyzed through vaginal bacterioscopy and cervical-vaginal cytology, respectively. Fasting-blood samples were collected by standard venipuncture for biochemical analyses. Flow cytometry was employed to obtain the T helper/T cytotoxic lymphocyte ratio, and insulin resistance was assessed by the HOMA index (HI). Yeasts were isolated from 71 (26%) women: 23 (32.4%) with a positive culture but without symptoms (COL), 22 (31%) in an acute episode (VVC), and 26 (36.6%) with RVVC. C. albicans was the main yeast isolated in all clinical profiles. The control group (negative culture) comprised 206 women. Diabetes mellitus and insulin resistance were more associated with the positive-culture groups (COL, VVC and RVVC) than with negative ones. The RVVC group showed lower mean levels of cortisol than the control group and lower antioxidant capacity than all other groups. The T Helper/T cytotoxic lymphocyte ratio was similar in all groups. The RVVC group showed a similar level of vaginal inflammation to the control group, and lower than in the COL and VVC groups. Only the CVV group showed a reduction in vaginal lactobacillus microbiota. Our data suggest that both chronic stress (decreased early-morning cortisol levels) and reduced antioxidant capacity can be host predisposing factors to RVVC.


Subject(s)
Antioxidants/metabolism , Candidiasis, Vulvovaginal/etiology , Stress, Psychological/complications , Adolescent , Adult , Blood Glucose/analysis , Candida albicans , Candidiasis, Vulvovaginal/psychology , Female , Humans , Inflammation/complications , Insulin Resistance , Microbiota , Prospective Studies , Recurrence , Risk Factors , Vagina/microbiology , Young Adult
20.
Article in English | MEDLINE | ID: mdl-27074319

ABSTRACT

Candida albicans is an opportunistic human pathogen that is capable of causing superficial and systemic infections in immunocompromised patients. Extracts of Sapindus saponaria have been used as antimicrobial agents against various organisms. In the present study, we used a combination of two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) to identify the changes in protein abundance of C. albicans after exposure to the minimal inhibitory concentration (MIC) and sub-minimal inhibitory concentration (sub-MIC) of the butanolic extract (BUTE) of S. saponaria and also to fluconazole. A total of six different proteins with greater than 1.5 fold induction or repression relative to the untreated control cells were identified among the three treatments. In general, proteins/enzymes involved with the glycolysis (GPM1, ENO1, FBA1), amino acid metabolism (ILV5, PDC11) and protein synthesis (ASC1) pathways were detected. In conclusion, our findings reveal antifungal-induced changes in protein abundance of C. albicans. By using the previously identified components of the BUTE of S. saponaria(e.g., saponins and sesquiterpene oligoglycosides), it will be possible to compare the behavior of compounds with unknown mechanisms of action, and this knowledge will help to focus the subsequent biochemical work aimed at defining the effects of these compounds.


Subject(s)
Antifungal Agents/pharmacology , Candida albicans/drug effects , Fluconazole/pharmacology , Fungal Proteins/analysis , Plant Extracts/pharmacology , Sapindus/chemistry , Candida albicans/chemistry , Electrophoresis, Gel, Two-Dimensional , Mass Spectrometry , Microbial Sensitivity Tests , Microscopy, Electron, Scanning
SELECTION OF CITATIONS
SEARCH DETAIL
...